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Ceci n’est pas de pluie…

2Fast R-CNN, Ross Girshick, 2015, https://arxiv.org/abs/1504.08083

 Raindrop was wrongly detected as a car by Fast R-CNN

https://arxiv.org/abs/1504.08083


Driverless Car Perception System
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LIDAR UNIT
Constantly spinning, it uses laser beams to 
generate a 360-degree image of the car’s 
surroundings.

CAMERAS
Uses parallax from multiple images to find the 
distance to various objects. Cameras also detect 
traffic lights and signs, and help recognize 
moving objects like pedestrians and bicyclists. 

RADAR SENSORS
Measure the distance from 
the car to obstacles.

ADDITIONAL 
LIDAR UNITS

MAIN COMPUTER 
(LOCATED IN TRUNK)
Analyzes data from the 
sensors, and compares 
its stored maps to assess 
current conditions.

What the Car Sees 
The car’s sensors gather data on nearby objects, like their size 
and rate of speed. It categorizes the objects — as cyclists, 
pedestrians or other cars and objects — based on how they are 
likely to behave.

LIDAR = Light Detection and Ranging
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Perception via camera only can be vulnerable
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Source: https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/

https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/


Perception via camera only can be vulnerable
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 The First Driver Casualty in Self-Driving Car 
Accident 
 7th May 2016, Florida US

 Tesla Model S, Autopilot mode

 Driver passed away

 The system didn’t distinguish the white truck against the 
brightly lit sky,  and failed to apply brakes.

Source: https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/

→ Could have been prevented if the system had LIDAR sensors

https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/


1. Research Question
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Can an autonomous vehicle make safe and robust decisions 
despite perception errors?



1. Contributions
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3 areas:

• Simulation Environment: we propose a methodology to include perception 
errors in a simulation pipeline. 

• Perception evaluation: we propose a novel holistic approach for the 
modeling and the evaluation of the capabilities of a perception subsystem.

• Safety of AVs: we aim to reach non-trivial conclusions regarding AV safety 
considering different settings and environmental conditions.



9IEEE Trans ITS, 2023, accepted



2. Evaluation Metrics (Computer Vision)
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[1] Mark Everingham, Luc Van Gool, Christopher K I Williams, John Winn, Andrew Zisserman, M Everingham, L Van Gool, CKI Williams, J Winn, and A Zisserman. The 
PASCAL Visual Object Classes (VOC) Challenge. Int J Comput Vis, 88:303–338, 2010. doi: 10.1007/s11263-009-0275-4
[2] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance: The CLEAR MOT metrics. Eurasip Journal on Image and Video 
Processing, 2008, 2008. ISSN 16875176. doi: 10.1155/2008/246309.

• IoU = 

Intersection

Union

Intersection over Union

Ground Truth Detection

• IoU > threshold  True Positive

Evaluation Metrics: from Computer Vision (CV)
oObject Detection: mAP (IoU) [1]
oObject Tracking: MOTP, MOTA [2]

base image source: nuScenes dataset



2. Error Model
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• Camera based
• 2D bounding 

boxes offsets

• Temporal Models 

[3] Pallavi Mitra, Apratim Choudhury, Vimal Rau Aparow, Giridharan Kulandaivelu, and Justin Dauwels. Towards Modeling of Perception Errors in Autonomous 
Vehicles. In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018. ISBN 9781728103235. doi: 10.1109/ITSC.2018.8570015. 

Ground Truth Detection

Evaluation Metrics: from Computer Vision (CV)
oObject Detection: mAP (IoU) [1]
oObject Tracking: MOTP, MOTA [2]



2. Issues of Evaluation Metrics
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I1: Temporal considerations: short 
vs. long non detection intervals.

I2: Overlap Sensitivity: how 
sensitive is DP to spatial errors?

I3: Relevance of the objects: 
which ones are actively affecting 
the decision taken?

Remark: Current Evaluation Metrics do not provide insights on the kinds of errors.



2. Object detection over time 

1350% detection rate in both cases, but very different risks!



3. Proposed Approach
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3. Dual Nature of PEMs
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• Explanatory Model
• Describe, and explain, the kinds of errors that can occur in the S&P subsystem.

• Generative model: 
• Include a PEM in a simulation pipeline to replace the S&P subsystem.



3. Experimental Setup: Architecture
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 a virtual vehicle driven by Apollo 
(ADS) in a virtual environment 
modeled in LGSVL simulator

 replaced Apollo’s Perception with a 
virtual sensor (implementing PEM)
 communicates over CyberRT

 Virtual sensor to
 detect ground truth,
 generate the error applying the PEM,
 publish the Object Map

 automated test execution framework 
(Python-based)



4. Experimental Setup: Test Cases
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TC1-3

TC4-5

Observed Not 
Observed

p

q

TC4-5a: Gaussian White Noise in polar coordinates (relative 
position):
• multiplicative noise on radius d as σd ∈ [0%, 12%];
• additive noise on azimuth θ as σθ ∈ [0°, 1.5°] 

TC5b: Uber accident: perfect detection, but with tracking loss 
probability ptl ∈ [0 ,1] for the previously detected obstacle.

TC1-3: false negative errors modeled by 
means of Markov chains
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4. Results TC1-3: Detection Frequency
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Safety 
increases 
with more 
frequent 
detections

Safety

Relative Frequency of Object Detection



2. Object detection over time 

2150% detection rate in both cases, but very different risks!



4. Results TC1-3: Non-detection interval length
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Safety 
decreases 
with longer 
non-detection 
intervals

Safety

Longest interval of 
Non-detection of Objects

Longest non-detection interval is more relevant for safety



Safety

Uber accident 

4. Results TC4-5
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Safety

Safety 
decreases with 
increasing 
tracking loss



5. Data-driven models
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• In the previous study, the model was hand-crafted to inject 
controlled errors. In our latest study, we use the nuScenes dataset 
(sensor data and ground truth) and Apollo perception module.

by

• nuScenes:
• 1000 scenes, ~20s each.
• 1.1M bounding boxes (ground truth)
• ~19% pedestrians, ~57% vehicles, ~24% other obstacles (traffic cones, barriers, 

etc.)

• Two steps:
• Train PEM on nuScenes dataset & Apollo’s detections
• With this PEM, simulate behavior of AV for test cases



5. nuScenes: Examples
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5. Training data for PEM: nuScenes and Apollo 
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by



5. Three perception systems
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ID Sensor Configuration
CAM Only frontal camera data
LID Only Lidar data, i.e., only the point cloud
FUL Full setup, combining camera, LiDAR, and RADAR data



5. Detection Probability: CAM
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0-40% 40-60% 60-80% 80-100%

• Camera Field of View and detection range
• Detection Probability increases with object visibility



5. Detection Probability: LID

29

• LiDAR Field of View and detection range
• Detection Probability increases with object visibility

0-40% 40-60% 60-80% 80-100%



5. Detection Probability: FUL
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• Fusion Field of View and detection range
• Detection Probability increases with object visibility

0-40% 40-60% 60-80% 80-100%



5. Detection Probability: Frontal Cone

31

CAM LID FUL

• Detection probability with CAM setup decays slower than LID
• FUL setup is better than LID, except for small distances



5. TC6: Jaywalking pedestrian
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CAM LID FUL GT

• Under CAM setup, the AV does not perform safely due to localization errors.
• LID and FUL both lead to safer behavior.
• Comparing LID, FUL, and GT, we observe how LID and FUL are more unstable than GT 

but maintain a larger distance from the pedestrian.



6. Conclusions
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• Effects of misdetection errors on AV behavior 
• Perception Error Model (PEM)
• Realistic simulations with errors generated by PEM
• Risk assessment

• Future developments:
• Physical HiL testing;
• On-road AV trials.



6. Future Works

34
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