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Ceci n'est pas de pluie...

Raindrop was wrongly detected as a car by Fast R-CNN
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Fast R-CNN, Ross Girshick, 2015, https://arxiv.org/abs/1504.08083 2



https://arxiv.org/abs/1504.08083

Driverless Car Perception System

Cloud size: 88254
GPF: 24 55ms
SLR: 33.024ms

LIDAR = Light Detection and Ranging



Driverless Car Perception System

What the Car Sees
The car’s sensors gather data on nearby objects, like their size
and rate of speed. It categorizes the objects — as cyclists,
pedestrians or other cars and objects — based on how they are
likely to behave.

CAMERAS
Uses parallax from multiple images to find the
distance to various objects. Cameras also detect
traffic lights and signs, and help recognize

oving objects like pedestrians and bicyclists.

LIDAR U
Constantly sNihing, it uses laser beams to

generate gree image of the car’s
surrou .
RADAR SENSORS i

Measure the distance from
the car to obstacles.

ADDITIONAL
LIDAR UNITS

MAIN COMPUTER
(LOCATED IN TRUNK)
T Analyzes data from the
sensors, and compares
its stored maps to assess
current conditions.




Perception via camera only can be vulnerable

THE DAILY NEWSLETTER

NewScientist

News Technology Space Physics Health Environment Mind Video Tours Events Jobs

Tesla driver dies in first fatal
autonomous car crash in US

TECHNOLOGY 1 July 2076

Source: https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/
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Perception via camera only can be vulnerable

= The First Driver Casualty in Self-Driving Car

Accident
= 7t May 2016, Florida US
= Tesla Model S, Autopilot mode m{ fﬂ.\
] .57
= Driver passed away o ¥
» The system didn't distinguish the white truck against the ¥,
brightly lit sky, and failed to apply brakes. ¥,

2 S
L 4
¥ " r
= - ok

— Could have been prevented if the system had LIDAR sensors

Source: https://www.newscientist.com/article/2095740-tesla-driver-dies-in-first-fatal-autonomous-car-crash-in-us/
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1. Research Question

Can an autonomous vehicle make safe and robust decisions
despite perception errors?’




1. Contributions

3 areas:

« Simulation Environment: we propose a methodology to include perception
errors in a simulation pipeline.

» Perception evaluation: we propose a novel holistic approach for the
modeling and the evaluation of the capabilities of a perception subsystem.

« Safety of AVs: we aim to reach non-trivial conclusions regarding AV safety
considering different settings and environmental conditions.
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PEM: Perception Error Model for Virtual Testing of
Autonomous Vehicles

Andrea Piazzoni™, Jim Cherian™, Justin Dauwels™, Senior Member, IEEE, and Lap-Pui Chau™, Fellow, IEEE

Abstract— Even though virtual testing of Autonomous Vehicles
{AVs) has been well recognized as essential for safety assessment,
AV simulators are still undergoing active development. One
particular challenge is the problem of including the Sensing
and Perception (S&P) subsystem into the virtual simulation loop
in an efficient and effective manner. In this article, we define
Perception Error Models (PEM), a virtual simulation component
that can enable the analysis of the impact of perception errors
on AV safety, without the need to model the sensors themselves.
We propose a generalized data-driven procedure towards para-
metric modeling and evaluate it using Apollo, an open-source
driving software, and nuScenes, a public AV dataset. Additionally,
we implement PEMs in SVL, an open-source vehicle simulator.
Furthermore, we demonstrate the usefulness of PEM-based
virtual tests, by evaluating camera. LiDAR. and camera-LiDAR
sefups., Our virtual tests highlight limitations in the current
evaluation metrics, and the proposed approach can help study
the impact of perception errors on AV safety.

Index Terms— Autonomous vehicles, computer vision. vehicle
safety, simulation.

driving behavior. For example, if the perception uncertainty
increases, the AV could reduce its speed and adopt a more
defensive driving, thus maintaining an adequate level of safety.
Nevertheless, failures in obstacle detection may still lead to
undesirable behavior such as collisions, emergency maneuvers,
or traffic rules violations. For instance, the leading cause of
a 2018 AV fatal accident was determined to be a perception
error that was not adequately handled [4]. Thus, a deeper
understanding of how perception errors affect the AV response
is necessary for safety assurance.

This connection between perception errors and AV response
can be explored via a holistic testing approach, both on a test
track and in virtual environments. In this paper, we concentrate
on virtual tests. Virtual testing of AVs by simulations offers a
safe and convenient way to validate safety [5]. However, how
to effectively include perception modules in the simulation
pipeline is an open question. A common approach in the
industrv is to emplov hieh-fidelitv models that represent the

IEEE Trans ITS, 2023, accepted



2. Evaluation Metrics (Computer Vision)

Intersection over Union

Evaluation Metrics: from Computer Vision (CV)

oObject Detection: mAP (loU) [1]
oObject Tracking: MOTP, MOTA [2]
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[1] Mark Everingham, Luc Van Gool, Christopher K | Williams, John Winn, Andrew Zisserman, M Everingham, L Van Gool, CKI Williams, J Winn, and A Zisserman. The
PASCAL Visual Object Classes (VOC) Challenge. Int J Comput Vis, 88:303-338, 2010. doi: 10.1007/s11263-009-0275-4

[2] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance: The CLEAR MOT metrics. Eurasip Journal on Image and Video
Processing, 2008, 2008. ISSN 16875176. doi: 10.1155/2008/246309.




2. Error Mode|

ACTUAL ERROR
FREDICTED ERROR BY NARNET
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« Camera based

* 2D bounding
boxes offsets

* Temporal Models

[3] Pallavi Mitra, Apratim Choudhury, Vimal Rau Aparow, Giridharan Kulandaivelu, and Justin Dauwels. Towards Modeling of Perception Errors in Autonomous
Vehicles. In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018. ISBN 9781728103235. doi: 10.1109/ITSC.2018.8570015. 1 1



2. Issues of Evaluation Metrics

L |
N [ TH H-TH- = IH-TH- - TH - =~ >
I1: Temporal considerations: short [ \ D T e i e s i ¥ e e e SO >
vs. long non detection intervals. | — = = = |
L |
12: Overlap Sensitivity: how -
sensitive is DP to spatial errors? [ DF——
| |
13: Relevance of the objects: i = ) '
which ones are actively affecting
the decision taken? LD LD iy ’

Remark: Current Evaluation Metrics do not provide insights on the kinds of errors.
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2. Object detection over time

50% detection rate in both cases, but very different risks! .,



3. Proposed Approach

( Testing Setup ) C Advantages J ( Disadvantages
4 Automated Driving System - Physical h 4 N h
. . . o * Risk involved
Physical Sensing Perception Driving Response High Fidelity - Time consuming
World = Policy Ex [
0 ensive
W S P )W)\ _DP R P
Virtual - Synthetic Signals A ( N[ . " b
, - * Ri + Computationally Expensive
Virtual Sensor Perception Driving Response ' Rﬁ:;ﬁg;i?e . Compplex SyntgeticpSensor
World Models > > Policy . . o
Syntheti B +Canb t ted * Hard to achieve High Fidelit
W q P DP R an be automate g y
Virtual - Proposed Approach h 4 * Risk free N
: . - * Replicable Synthetic data is missing,
Virtual Perception Error Model Dr|v.|ng Response . Can be automated but it can still be helpful
W)(/)\rjld PEM F’B'f)y R - Flexible in Machine Learning
\_ Y, \_ + Real Time J Y,
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3. Dual Nature of PEMs

* Explanatory Model
 Describe, and explain, the kinds of errors that can occur in the S&P subsystem.

W =W+ E

* Generative model:
* Include a PEM in a simulation pipeline to replace the S&P subsystem.

~

W — W
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3. Experimental Setup: Architecture

a virtual vehicle driven by Apollo
(ADS) in a virtual environment
modeled in LGSVL simulator

replaced Apollo's Perception with a
virtual sensor (implementing PEM)

communicates over CyberRT

Virtual sensor to
& LGSVL detect ground truth,

[ ] W .
Baiﬁﬁﬁ aeollo < SIMULATOR generate the error applying the PEM,
publish the Object Map

automated test execution framework
(Python-based)

17



4. Experimental Setup: Test Cases

Scenario

Test case Experiment

sets

Parameter
Variations

Perception
Error Model

Experiment

TC1-3: false negative errors modeled by
means of Markov chains

Not
Observed

Observed

TC1-3 | o

TC4-5

[ DF——

TC4-5a: Gaussian White Noise in polar coordinates (relative
position):

« multiplicative noise on radius d as ad € [0%, 12%];
 additive noise on azimuth 6 as g6 € [0°, 1.5°]

TC5b: Uber accident: perfect detection, but with tracking loss
probability ptt € [0,1] for the previously detected obstacle.

18
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2. Object detection over time

50% detection rate in both cases, but very different risks! 51
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4. Results TC1-3: Non-detection interval length
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5. Data-driven models - NUSCENES ., motional

* In the previous study, the model was hand-crafted to inject
controlled errors. In our latest study, we use the nuScenes dataset
(sensor data and ground truth) and Apollo perception module.

e nuScenes:
* 1000 scenes, ~20s each.

* 1.1M bounding boxes (ground truth)

« ~19% pedestrians, ~57% vehicles, ~24% other obstacles (traffic cones, barriers,
etc.)

* Two steps:
 Train PEM on nuScenes dataset & Apollo’'s detections
 With this PEM, simulate behavior of AV for test cases 24



5. nuScenes: Examples

| _$_CO|G - - scene-0242




5. Training data for PEM: nuScenes and Apollo

- N N a

s N
N ( Camera |
—{Sensor D C
ensor at@’{ amera J [ —— ] G_Ocalizatio@
S woar H[[C e T
( GPS )

@{ GT Iabels) { \_ Writers / ( S )
)
@ { Eqgo Pose ) [@]J [Perception)

Readers

nuScenes Apollo
\_ (Public Dataset) ) \_CyberRTAPI / \_ (ADS) )
NUSCENES.., motiona Bai®E® | QEollo

26



5. Three

perception systems

ID Sensor Configuration

CAM On
LID On
FUL Ful

y frontal camera data
y Lidar data, I.e., only the point cloud

setup, combining camera, LIDAR, and RADAR data

27



5. Detection Probability: CAM

i o
S

0-40% 40-60% 60-80% 80-100%

e Camera Field of View and detection range
« Detection Probability increases with object visibility

28



5. Detection Probability: LID

AR Rt Red
NS NS N
0-40% 40-60% 60-80% 80-100% i

 LIDAR Field of View and detection range

« Detection Probability increases with object visibility
29



5. Detection Probability: FUL

Sest o S
S N N
0-40% 40-60% 60-80% 80-100% o

 Fusion Field of View and detection range

« Detection Probability increases with object visibility
30



Detection Probability: Frontal Cone

Detection rate
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 Detection probability with CAM setup decays slower than LID
« FUL setup is better than LID, except for small distances
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5. TC6: Jaywalking pedestrian
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« Under CAM setup, the AV does not perform safely due to localization errors.

« LID and FUL both lead to safer behavior.
« Comparing LID, FUL, and GT, we observe how LID and FUL are more unstable than GT

but maintain a larger distance from the pedestrian.
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0. Conclusions

» Effects of misdetection errors on AV behavior
 Perception Error Model (PEM)
* Realistic simulations with errors generated by PEM
* Risk assessment

 Future developments:
 Physical HiL testing;
* On-road AV trials.

33



0. Future Works

@ Bus stop with bay @ Signalled intersection @ Urban canyon
@ Rain simulator @ V2X communication Pedestrian crossing
) slope Charging station for vehicle and (1) Crank course

: : . AutOnomous VehicLe
@ signalled intersection Monltoring and EValuation @ Bus stop

@ S-course SystEm (OLIVE) @ Flash flood area
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